首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The response of extracellular signal-regulated kinase (ERK) to androgen-induced proliferation in the androgen-sensitive prostate cancer cell line, LNCaP
Authors:W C Bell  R B Myers  T O Hosein  D K Oelschlager  W E Grizzle
Institution:  a Department of Pathology, University of Alabamaat at Birmingham, Birmingham, Alabama b Richard Allan Scientific, Kalamazoo, michigan
Abstract:The mechanisms by which androgens stimulate proliferation of prostate cancer cells are poorly understood. It has been proposed that androgen stimulation may induce the mitogen-activated protein (MAP) kinase system in prostate cancer cells and lead to cellular proliferation. We attempted to evaluate the role of the extracellular signal-regulated kinase (ERK) pathway in the stimulation by androgens of prostate cancer cell proliferation. Androgen-sensitive prostate cancer cell line (LNCaP) cells plated on sterile glass coverslips were treated with 10-8 M dihydrotestosterone (DHT) or epidermal growth factor (EGF) (10 ng/ml) for periods ranging from 1 min to 96 h. The proliferative index of the cells, evaluated by immunoperoxidase staining of cells with an antibody to Ki-67, was increased at least two-fold at all time points from 5 min to 48 h following exposure to either DHT or EGF. Immunohistochemical evaluation of ERK1/2 and pERK (activated ERK) demonstrated high levels of ERK1/2 in untreated LNCaP cells, while pERK was expressed at much lower levels. Following treatment with DHT, no change in staining intensity for either ERK1/2 or pERK was observed, while treatment with EGF resulted in no change in ERK1/2, but significantly increased cytoplasmic staining for pERK at all time points beyond 2 min. These results were confirmed by Western blot analysis of ERK1/2 and pERK expression in these cell lines following treatment with DHT or EGF. Our findings suggest that the proliferative response of prostate cancer cells to androgens, unlike the proliferative response to EGF, is not mediated by the activation of ERK1/2, and that currently undefined pathways other than those involving ERK1/2 are involved.
Keywords:
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号