首页 | 本学科首页   官方微博 | 高级检索  
     


Phylogenetic and functional analysis of histidine residues essential for pH-dependent multimerization of von Willebrand factor
Authors:Dang Luke T  Purvis Angie R  Huang Ren-Huai  Westfield Lisa A  Sadler J Evan
Affiliation:Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Abstract:von Willebrand factor (VWF) is a multimeric plasma protein that mediates platelet adhesion to sites of vascular injury. The hemostatic function of VWF depends upon the formation of disulfide-linked multimers, which requires the VWF propeptide (D1D2 domains) and adjacent D′D3 domains. VWF multimer assembly occurs in the trans-Golgi at pH ∼6.2 but not at pH 7.4, which suggests that protonation of one or more His residues (pKa ∼6.0) mediates the pH dependence of multimerization. Alignment of 30 vertebrate VWF sequences identified 13 highly conserved His residues in the D1D2D′D3 domains, and His-to-Ala mutagenesis identified His395 and His460 in the D2 domain as critical for VWF multimerization. Replacement of His395 with Lys or Arg prevented multimer assembly, suggesting that reversible protonation of this His residue is essential. In contrast, replacement of His460 with Lys or Arg preserved normal multimer assembly, whereas Leu, Met, and Gln did not, indicating that the function of His460 depends primarily upon the presence of a positive charge. These results suggest that pH sensing by evolutionarily conserved His residues facilitates the assembly and packaging of VWF multimers upon arrival in the trans-Golgi.
Keywords:Endothelium   Evolution   Gene Structure   Hemostasis   Histidine   Intracellular Processing   Protein Assembly   von Willebrand Factor
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号