首页 | 本学科首页   官方微博 | 高级检索  
     


Clonal variation in floral stage timing in the common dandelion Taraxacum officinale (Asteraceae)
Authors:Collier Matthew H  Rogstad Steven H
Affiliation:Department of Biology, Wittenberg University, Springfield, Ohio 45501-0720 USA;
Abstract:We investigated the hypothesis that dandelion clones (Taraxacum officinale Weber, sensu lato; Asteraceae) differ in their floral stage timing characteristics under a constant set of environmental conditions. To test this hypothesis, plants representing nine different dandelion clones (identified by DNA fingerprinting) were grown in groups of five (N = 45) in a growth chamber for a period of 8 mo, with chamber settings similar to environmental conditions at peak dandelion flowering time for their population sites. Five flowering phenology parameters were monitored daily for a total of 301 buds developing during this time: (1) time to bud; (2) time to full opening and inflorescence maturation (i.e., first anthesis); (3) time to re-closure of an inflorescence; (4) time to fruit (full re-opening of the inflorescence); and (5) total flowering time. Scape length at the appearance of a fully expanded infructescence was also measured for each individual. Significant differences in mean time to inflorescence, mean time to re-closure, mean time to fruit, and mean total flowering time were revealed among some dandelion clones (Kruskal-Wallis, P ≤ 0.0005). No differences in mean number of inflorescence buds per plant (P = 0.2217), mean time to bud (P = 0.2396), or mean scape length (P = 0.3688) were detected among the nine clones. These results suggest that differences in floral stage timing may in part involve varying genotypic environmental response characteristics and that these differences may have potential fitness effects. Further research is needed to determine if such clonal differences are observed under a broader range of uniform environmental conditions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号