首页 | 本学科首页   官方微博 | 高级检索  
     


Age-Dependent Changes in the Ultrastructure and in the Molecular Composition of Rat Brain Microtubules
Authors:J. F. Leterrier  J. Eyer
Affiliation:U 298 INSERM, CHRU Angers, France.
Abstract:An age-dependent increase of a cathepsin D-like protease activity that preferentially degrades high molecular weight microtubule-associated proteins (MAPs) has been previously described. Microtubules (MT) purified from rat brain of different ages in the presence of several protease inhibitors retained undegraded MAPs through cycles of polymerization, and revealed several age-dependent changes in the relative amounts of MAPs and MT-associated kinases. MAP2 immunoreactivity was found significantly lower in MT preparations from aged animals in contrast with a relative increase of tau molecules. In addition, the phosphorylation of MAP2 by its associated cyclic AMP-dependent protein kinase was also altered, consecutively to the partial loss of the enzyme during polymerization cycles and an age-dependent decrease in the ability of the cyclic nucleotide to stimulate MAP2-bound kinase activity. The evidence of an unusually high packing density of sedimented MT from old rat brains further suggested the modification with aging of the physical structure of the arm-like projections of MAPs, in addition to a lower amount in high molecular weight MAPs. These results support the hypothesis of a selective alteration with aging of the mechanical and regulatory properties of brain MT, consecutive to a change in the composition and/or the structure of MAPs.
Keywords:Age    Microtubules    Microtubule-associated proteins    Phosphorylation    Cyclic AMP-dependent microtubule-associated protein kinase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号