Long-term demographic analysis in goshawk Accipiter gentilis: the role of density dependence and stochasticity |
| |
Authors: | Oliver Krüger |
| |
Affiliation: | Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK. ok212@cam.ac.uk |
| |
Abstract: | Density dependence and environmental stochasticity are both potentially important processes influencing population demography and long-term population growth. Quantifying the importance of these two processes for population growth requires both long-term population as well as individual-based data. I use a 30-year data set on a goshawk Accipiter gentilis population from Eastern Westphalia, Germany, to describe the key vital rate elements to which the growth rate is most sensitive and test how environmental stochasticity and density dependence affect long-term population growth. The asymptotic growth rate of the fully age-structured mean matrix model was very similar to the observed one (0.7% vs. 0.3% per annum), and population growth was most elastic to changes in survival rate at age classes 1-3. Environmental stochasticity led only to a small change in the projected population growth rate (between -0.16% and 0.67%) and did not change the elasticities qualitatively, suggesting that the goshawk life history of early reproduction coupled with high annual fertility buffers against a variable environment. Age classes most crucial to population growth were those in which density dependence seemed to act most strongly. This emphasises the importance of density dependence as a regulatory mechanism in this goshawk population. It also provides a mechanism that might enable the population to recover from population lows, because a mean matrix model incorporating observed functional responses of both vital rates to population density coupled with environmental stochasticity reduced long-term extinction risk of 30% under density-independent environmental stochasticity and 60% under demographic stochasticity to zero. |
| |
Keywords: | Environmental stochasticity Extinction risk Matrix model Population growth rate Vital rates |
本文献已被 PubMed SpringerLink 等数据库收录! |
|