首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle
Authors:Kuyper Marko  Winkler Aaron A  van Dijken Johannes P  Pronk Jack T
Institution:Kluyver Laboratory of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
Abstract:When xylose metabolism in yeasts proceeds exclusively via NADPH-specific xylose reductase and NAD-specific xylitol dehydrogenase, anaerobic conversion of the pentose to ethanol is intrinsically impossible. When xylose reductase has a dual specificity for both NADPH and NADH, anaerobic alcoholic fermentation is feasible but requires the formation of large amounts of polyols (e.g., xylitol) to maintain a closed redox balance. As a result, the ethanol yield on xylose will be sub-optimal. This paper demonstrates that anaerobic conversion of xylose to ethanol, without substantial by-product formation, is possible in Saccharomyces cerevisiae when a heterologous xylose isomerase (EC 5.3.1.5) is functionally expressed. Transformants expressing the XylA gene from the anaerobic fungus Piromyces sp. E2 (ATCC 76762) grew in synthetic medium in shake-flask cultures on xylose with a specific growth rate of 0.005 h(-1). After prolonged cultivation on xylose, a mutant strain was obtained that grew aerobically and anaerobically on xylose, at specific growth rates of 0.18 and 0.03 h(-1), respectively. The anaerobic ethanol yield was 0.42 g ethanol x g xylose(-1) and also by-product formation was comparable to that of glucose-grown anaerobic cultures. These results illustrate that only minimal genetic engineering is required to recruit a functional xylose metabolic pathway in Saccharomyces cerevisiae. Activities and/or regulatory properties of native S. cerevisiae gene products can subsequently be optimised via evolutionary engineering. These results provide a gateway towards commercially viable ethanol production from xylose with S. cerevisiae.
Keywords:Xylose isomerase  Hemicellulose  Fermentation  Pentose  Yeast  Bioethanol
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号