首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Predicting relatedness of bacterial genomes using the chaperonin-60 universal target (cpn60 UT): application to Thermoanaerobacter species
Authors:Verbeke Tobin J  Sparling Richard  Hill Janet E  Links Matthew G  Levin David  Dumonceaux Tim J
Institution:a Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
b Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
c Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada
d Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
Abstract:D.R. Zeigler determined that the sequence identity of bacterial genomes can be predicted accurately using the sequence identities of a corresponding set of genes that meet certain criteria 32]. This three-gene model for comparing bacterial genome pairs requires the determination of the sequence identities for recN, thdF, and rpoA. This involves the generation of approximately 4.2 kb of genomic DNA sequence from each organism to be compared, and also normally requires that oligonucleotide primers be designed for amplification and sequencing based on the sequences of closely related organisms. However, we have developed an analogous mathematical model for predicting the sequence identity of whole genomes based on the sequence identity of the 542-567 base pair chaperonin-60 universal target (cpn60 UT). The cpn60 UT is accessible in nearly all bacterial genomes with a single set of universal primers, and its length is such that it can be completely sequenced in one pair of overlapping sequencing reads via di-deoxy sequencing. These mathematical models were applied to a set of Thermoanaerobacter isolates from a wood chip compost pile and it was shown that both the one-gene cpn60 UT-based model and the three-gene model based on recN, rpoA, and thdF predicted that these isolates could be classified as Thermoanaerobacter thermohydrosulfuricus. Furthermore, it was found that the genomic prediction model using cpn60 UT gave similar results to whole-genome sequence alignments over a broad range of taxa, suggesting that this method may have general utility for screening isolates and predicting their taxonomic affiliations.
Keywords:Thermoanaerobacter  Chaperonin-60  Heat-shock protein  cpn60 universal target  Genome prediction  Taxonomic identification
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号