The mechanism of homologous DNA strand exchange catalyzed by the bacteriophage T4 uvsX and gene 32 proteins |
| |
Authors: | T Kodadek M L Wong B M Alberts |
| |
Affiliation: | Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448. |
| |
Abstract: | A strand exchange reaction between a single-stranded DNA circle and a homologous linear double-stranded DNA molecule is catalyzed by a mixture of two T4 bacteriophage proteins, the uvsX protein (a DNA-dependent ATPase that resembles the recA protein) and the gene 32 protein (a helix-destabilizing protein). The products are different from those formed in the corresponding recA protein-catalyzed reaction; rather than producing a linear single strand plus a nicked circular double-stranded (form II) DNA molecule as the final products, interlinked DNA networks are rapidly generated. Electron microscopy reveals that these networks form from multiple pairing reactions that involve the recombination intermediates. Since the uvsX protein is present in substoichiometric quantities, it presumably recycles to catalyze these successive pairing events. Recycling of the uvsX protein has been more directly examined in an assay that monitors the rate of uvsX protein-catalyzed branch migration. The branch migration reaction is rapidly inhibited by dilution of the uvsX protein or by the addition of a heterologous competitor DNA, showing that the uvsX protein-DNA filaments that catalyze strand exchange are dynamic structures. The evidence suggests that individual uvsX protein monomers are continuously entering and leaving the cooperatively formed filament in a cycle that is strongly affected by their ATP hydrolysis. |
| |
Keywords: | |
|
|