首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Eucaryote thermophily: role of lipids in the growth of Talaromyces thermophilus
Authors:C Wright  D Kafkewitz  E W Somberg
Abstract:Metabolically active heterocysts were isolated from a mutant of Anabaena sp. strain CA with fragile vegetative cells. Heterocysts isolated from cultures grown in 1% CO2 in air reduced C2H2 at 57 and 10 nmol of C2H2 per mg (dry weight) per min under H2 and Ar, respectively. However, if whole filaments were sparged with 1% CO2 in 99% Ar for 12 h before heterocyst isolation, these heterocysts showed C2H2 reduction rates of 83 nmol of C2H4 per mg (dry weight) per min under either H2 or Ar, or 40% the activity of whole filaments grown in 1% CO2 in air. Heterocysts isolated from cultures sparged with 100% Ar or 1% CO2 in 99% N2 had the same C2H2 reduction pattern as heterocysts from cultures grown in 1% CO2 in air, i.e., low activity under Ar and high activity under H2. Labeling of whole filaments incubated with NaH14CO3 for 12 h under 1% CO2 in air or 1% CO2 in 99% Ar resulted in a twofold higher accumulation of 14C-labeled compounds in vegetative cells and heterocysts of Ar-incubated cells. Our results suggest that during incubation under 1% CO2 in 99% Ar, presumably a nitrogen starvation condition, continuing photosynthetic fixation of CO2 leads to accumulation of material(s) in the heterocysts that supports a high, persistent endogenous rate of C2H2 reduction. This material appears to be, in part, glycogen.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号