MORPHOLOGY,VASCULAR ANATOMY AND EMBRYOLOGY OF PISTILLATE AND STAMINATE FLOWERS OF ASPARAGUS OFFICINALIS |
| |
Authors: | Jaime E. Lazarte Barbara F. Palser |
| |
Affiliation: | Departments of Horticulture and Botany, Rutgers University, New Brunswick, NJ, 08903 |
| |
Abstract: | Flowers of three pistillate (female), two heterogametic staminate (male) and two homogametic male genotypes of Asparagus officinalis L. were compared for morphology and vascular anatomy of the flower and for embryological development to the stage of mature ovules and pollen. Flowers are liliaceous, the staminate with rudimentary pistils and the pistillate with collapsed anthers. The uncomplicated vascular pattern differs between staminate and pistillate flowers only in the size and degree of maturation of bundles to stamens and carpels. Longer styles appear to be correlated with a greater extent of ovule development in ovaries of staminate flowers. Microsporogenesis in males is normal with wall development corresponding to the Monocotyledonous type. The tapetum is glandular and binucleate, cytokinesis successive, the tetrads isobilateral or occasionally decussate, and the mature pollen grain two-celled. A pair of heteromorphic, possibly sex, chromosomes was observed in heterogametic male plants. Anther development is initially the same in pistillate flowers, but the tapetum degenerates precociously followed by collapse of microspore mother cells. In pistillate flowers the ovules are hemitropous, bitegmic, and slightly crassinucellate. Megasporogenesis-megagametogenesis conforms to the Polygonum type. In staminate flowers ovule development is like that in pistillate flowers until degeneration starts in nucellar and integumentary cells at the chalazal end. Ovules in both homogametic male genotypes rarely complete meiosis, while in the heterogametic males it is normally completed with about one ovule in 20 flowers forming a mature megagametophyte. Since manipulation of sex expression in Asparagus could be important in developing inbred male and female lines for breeding purposes, those aspects of the morphological and embryological observations presented which might be useful in planning experiments to induce sex changes are discussed briefly. |
| |
Keywords: | |
|
|