首页 | 本学科首页   官方微博 | 高级检索  
   检索      


QUANTITATIVE MEASUREMENTS OF INTERACTIONS BETWEEN CROWN-GALL TUMORS AND THE PINTO BEAN HOST
Authors:M D El Khalifa  James A Lippincott
Institution:Department of Biological Sciences, Northwestern University, Evanston, Illinois
Abstract:Interactions between crown-gall tumors on the primary pinto bean leaf and the pinto bean seedling (Phaseolus vulgaris L. ‘Pinto‘) were estimated by quantitative measurements of tumor initiation and growth as affected by certain modifications of the host. Effects of the tumors on the host were estimated by measurements of host growth and correlation responses. The presence of crown-gall tumors was found to reduce the growth of the leaf in area but to nearly double the weight of the leaf 9 days after inoculation with Agrobacterium tumefaciens (Smith and Town.) Conn, strain B6. The presence of tumors on only one of the two primary leaves resulted in a decrease in the weight of the leaf without tumors, showing the tumors to be effective mobilization centers. Tumors also delayed the abscission of petiole explants and delayed the growth of the epicotyl bud, both reminiscent of auxin effects. The excision of the cotyledons, the epicotyl bud, or one of the pair of primary leaves at the time of inoculation increased the number of tumors initiated per leaf. Removing the epicotyl bud or one of the primary leaves, or placing a cytokinin on one of the leaves, altered leaf growth but failed to alter tumor growth, indicating that tumor growth is not affected by the changes responsible for the compensatory growth effects induced by these treatments. Tumor growth was shown to be generally correlated with leaf growth from day 2 through 8 after inoculation, suggesting that the factors normally limiting leaf growth in a determinate type leaf are also active in limiting tumor growth. The changes in the plant cell responsible for the enhanced rate of growth seen in crown-gall tumor cells, therefore, appear to occur in regulatory systems other than those normally limiting leaf growth. The regulatory systems that are affected may be identical with those activated in compensatory host growth effects.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号