首页 | 本学科首页   官方微博 | 高级检索  
     


THE MORPHOLOGICAL EFFECTS OF PROTEIN SYNTHESIS INHIBITION IN MARSILEA
Authors:Richard A. White
Affiliation:Department of Botany, Duke University, Durham, North Carolina
Abstract:Marsilea vestita and M. drummondii were grown in sterile cultures to which concentrations of the protein synthesis inhibitors, 2-thiouracil (10 mg/liter) and 5-fluorouracil (1 mg/liter) had been added. When young sporelings are grown in a solution of thiouracil at optimum concentration, there is an inhibition of the rate of leaf formation, a retardation of the leaf heteroblastic series, and all leaves develop as land forms. When thiouracil is added to plants which are already producing typical adult, quadrifid leaves, the effects depend on whether the treated plants are water or land forms. Plants which are typically water forms convert to land forms. After treatment successive leaves develop typical sunken stomata on both leaf surfaces. The tissues of the rhizome, root and petiole are more compact and, in general, the cells of the plant have thicker walls. Vascular patterns are not changed, though the size of the rhizome, root and petiole may be reduced. Plants which are typically land forms are less affected than the water forms, but they show a small reduction in apex volume and an apparent reversion of the leaflet number from the typical quadrifid leaf to a trifid, bifid, or single lamina condition. In both land and water forms apical dominance may be broken by treatment with 10 mg/liter thiouracil or 1 mg/liter fluorouracil and numerous lateral branches develop. Higher concentrations (15–25 mg/liter of thiouracil) may result in abnormal development of lateral axillary buds, petiole bases and leaflets. The meristems of the plant are differentially sensitive to thiouracil; leaflet meristems are most sensitive, the root meristems are the least sensitive. It appears that a true reversion to juvenile leaf development need not occur even though protein synthesis and the volume of the apex are reduced. The development of the land or water form in Marsilea appears to depend on rate of growth. Hence inhibition of the growth of typical water forms, through inhibition of protein synthesis, causes a shift in development toward the morphology typical of land forms.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号