首页 | 本学科首页   官方微博 | 高级检索  
   检索      


THE EFFECTS OF TEN PHENOLIC COMPOUNDS ON HYPOCOTYL GROWTH AND MITOCHONDRIAL METABOLISM OF MUNG BEAN
Authors:E K Demos  M Woolwine  R H Wilson  C McMillan
Institution:Cell Research Institute and Department of Botany, The University of Texas, Austin, 78712
Abstract:Ten phenolic compounds were examined for their effect on mung bean (Phaseolus aureus L.) hypocotyl growth and on respiration and coupling parameters of isolated mung bean hypocotyl mitochondria. Three compounds—tannic, gentisic, and p-coumaric acids—inhibited hypocotyl growth and when incubated with isolated hypocotyl mitochondria released respiratory control, inhibited respiration, and prevented substrate-supported Ca2+ and PO4 transport. Vanillic acid also inhibited hypocotyl growth and reduced mitochondrial Ca2+ uptake but did not affect respiration or respiratory control of isolated mitochondria. This is the first compound reported to selectively inhibit Ca2+ uptake in plant mitochondria. Two other phenolic compounds—α, 3,5-resorcylic and protocatechuic acids—showed no significant effect on hypocotyl growth and did not affect mitochondrial oxidative phosphorylation either separately or in various combinations. Four phenolic compounds—ferulic, caffeic, p-hydroxybenzoic, and syringic acids—showed a significant reduction in mung bean hypocotyl growth but did not inhibit any of the mitochondrial processes examined. The results show that phenolic compounds which alter respiration or coupling responses in isolated mitochondria also inhibit hypocotyl growth and may reflect a mechanism of action for these natural growth inhibitors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号