首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In vivo optical imaging of motor neuron autophagy in a mouse model of amyotrophic lateral sclerosis
Authors:Tian Fengfeng  Morimoto Nobutoshi  Liu WenTao  Ohta Yasuyuki  Deguchi Kentaro  Miyazaki Kazunori  Abe Koji
Institution:Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Abstract:Autophagy is involved in the pathological process of motor neuron death in amyotrophic lateral sclerosis (ALS). We have generated a novel double transgenic (DTg) mouse line by mating a green fluorescent protein (GFP)-fused microtubule-associated protein 1 light chain 3 (LC3) transgenic (LC3-Tg) mouse and a G93A mutant human Cu/Zn superoxide dismutase (mSOD1) transgenic (mSOD1-Tg) mouse. In vivo imaging of autophagy with these novel DTg mice was conducted at 10 (presymptomatic), 17 (early symptomatic) and 19 (late symptomatic) weeks of age. Fluorescence imaging analysis revealed a strong fluorescent signal in vivo over the T?-S? level at 17 and 19 weeks of age only in the DTg mice. Ex vivo autophagy imaging of spinal cord sections (20 μm) also showed a progressive increase of the fluorescence signal from 17 to 19 weeks in DTg mice in the anterior horn at the L?-? level, and the fluorescence signals were clearly observed in the gray matter of the spinal cord with a progressive increase of the signal and decreases in large motor neurons. Protein gel blot analysis revealed maximum LC3-I and LC3-II expressions at 19 weeks, consistent with the results from the in vivo autophagy imaging experiment. This method could also be applied as a unique tool for clarifying the role of autophagy, and to monitor the pathologic processes involving autophagy not only in ALS, but also other neurological diseases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号