首页 | 本学科首页   官方微博 | 高级检索  
   检索      


cAMP-dependent protein kinase stimulates epidermal growth factor-dependent phosphorylation of epidermal growth factor receptors
Authors:P Ghosh-Dastidar  C F Fox
Abstract:Epidermal growth factor (EGF)-dependent transfer of radiolabeled phosphate from gamma-32P]ATP to 160-kDa EGF receptor solubilized from human epidermoid carcinoma A431 cell surface membranes was stimulated up to 3-fold by addition of 3',5'-cAMP and purified cAMP-dependent protein kinase. Phosphorylation of EGF receptors was stimulated to the same extent when cAMP-dependent protein kinase catalytic subunit was substituted for 3',5'-cAMP and cAMP-dependent protein kinase. Phosphoamino acid analysis revealed that the extent of phosphorylation of EGF receptor at tyrosine residues was the same regardless of whether cAMP-dependent protein kinase catalytic subunit was present in or omitted from the system. Increased EGF receptor phosphorylation occurring in response to cAMP-dependent protein kinase catalytic subunit was accounted for by phosphorylation at serine or threonine residues. In samples phosphorylated in the presence of cAMP-dependent protein kinase catalytic subunit, phosphate was present in tyrosine, serine, and threonine in a ratio of 32:60:8. Two-dimensional mapping of radiolabeled phosphopeptides produced from EGF receptors by digestion with trypsin revealed the generation of one additional major phosphoserine-containing peptide when cAMP-dependent protein kinase was present with EGF in the EGF receptor kinase system. Degradation of 160-kDa EGF receptors to a 145-kDa form by purified Ca2+-activated neutral protease produced a 145-kDa fragment with phosphoserine content increased over that present initially in the 160-kDa precursor.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号