首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Direct inhibition of type 5 adenylyl cyclase prevents myocardial apoptosis without functional deterioration
Authors:Iwatsubo Kousaku  Minamisawa Susumu  Tsunematsu Takashi  Nakagome Masamichi  Toya Yoshiyuki  Tomlinson James E  Umemura Satoshi  Scarborough Robert M  Levy Daniel E  Ishikawa Yoshihiro
Institution:Department of Physiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan.
Abstract:Adenylyl cyclase, a major target enzyme of beta-adrenergic receptor signals, is potently and directly inhibited by P-site inhibitors, classic inhibitors of this enzyme, when the enzyme catalytic activity is high. Unlike beta-adrenergic receptor antagonists, this is a non- or uncompetitive inhibition with respect to ATP. We have examined whether we can utilize this enzymatic property to regulate the effects of beta-adrenergic receptor stimulation differentially. After screening multiple new and classic compounds, we found that some compounds, including 1R,4R-3-(6-aminopurin-9-yl)-cyclopentanecarboxylic acid hydroxyamide, potently inhibited type 5 adenylyl cyclase, the major cardiac isoform, but not other isoforms. In normal mouse cardiac myocytes, contraction induced by low beta-adrenergic receptor stimulation was poorly inhibited with this compound, but the induction of cardiac myocyte apoptosis by high beta-adrenergic receptor stimulation was effectively prevented by type 5 adenylyl cyclase inhibitors. In contrast, when cardiac myocytes from type 5 adenylyl cyclase knock-out mice were examined, beta-adrenergic stimulation poorly induced apoptosis. Our data suggest that the inhibition of beta-adrenergic signaling at the level of the type 5 adenylyl cyclase isoform by P-site inhibitors may serve as an effective method to prevent cardiac myocyte apoptosis induced by excessive beta-adrenergic stimulation without deleterious effect on cardiac myocyte contraction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号