首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pig red blood cell hexokinase: Regulatory characteristics and possible physiological role
Authors:Mauro Magnani  Vilberto Stocchi  Novella Serafini  Elena Piatti  Marina Dachà  Giorgio Fornaini
Institution:Istituto di Chimica Biologica, Università degli Studi di Urbino, via Saffi, 2—61029 Urbino, Italy
Abstract:The regulatory properties of pig erythrocyte hexokinase III have been studied. Among mammalian erythrocyte hexokinases, the pig enzyme shows the highest affinity for glucose and a positive cooperative effect with nH = 1.5 at all the MgATP concentrations studied (for 0.5 to 5 mm). Glucose at high concentrations is also an inhibitor of hexokinase III. Similarly, the apparent affinity constant for MgATP is independent of glucose concentration. Uncomplexed ATP and Mg are both competitive inhibitors with respect to MgATP. Glucose 6-phosphate, known as a stronger inhibitor of all mammalian erythrocyte hexokinases, is a poor inhibitor for the pig enzyme (Ki = 120 μm). Furthermore, this inhibition is not relieved by orthophosphate as with other mammalian red blood cell hexokinases. A variety of red blood cell-phosphorylated compounds were tested and found to be inhibitors of pig hexokinase III. Of these, glucose 1,6-diphosphate and 2,3-diphosphoglycerate displayed inhibition constants in the range of their intracellular concentrations. In an attempt to investigate the role of hexokinase type III in pig erythrocytes some metabolic properties of this cell have been studied. The adult pig erythrocyte is able to utilize 0.27 μmol of glucose/h/ml red blood cells (RBC) compared with values of 0.56–2.85 μmol/h/ml RBC for the other mammalian species. This reduced capacity to metabolize glucose results from a relatively poor ability of the cell membrane to transport glucose. In fact, all the glycolytic enzymes were present and a low intracellular glucose concentration was measured (0.5 mm against a plasma level of 5 mm). Furthermore, transport and utilization were concentration-dependent processes. Inosine, proposed as the major energy substrate of the pig erythrocyte, at physiological concentrations is not as efficient as glucose in maintaining reduced glutathione levels under oxidative stress. Furthermore, newborn pig erythrocytes (fully permeable to glucose) possess hexokinase type II as the predominant glucose-phosphorylating activity. This fact and the information derived from the study of the regulatory characteristics of hexokinase III and from metabolic studies on intact pig erythrocytes permit the hypothesis that the presence of this peculiar hexokinase isozyme (type III) enables the adult pig erythrocyte to metabolize low but appreciable amounts of glucose.
Keywords:To whom correspondence should be addressed  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号