首页 | 本学科首页   官方微博 | 高级检索  
     


Resolution of the effects of sulfhydryl-blocking reagents on hormone-and DNA-binding activities of the chick oviduct progesterone receptor
Authors:William A. Coty  Terrill A. Klooster  Robert E. Griest  Joyce A. Profita
Affiliation:Department of Biological Chemistry, University of California at Los Angeles School of Medicine, Center for the Health Sciences, Los Angeles, California 90024 U.S.A.
Abstract:The differential effects of sulfhydryl (SH)-blocking agents on hormone and DNA binding by the chick oviduct progesterone receptor were investigated. Previous studies have demonstrated inhibition of steroid-receptor interaction by SH-blocking agents and protection against inhibition by bound hormone. The present results indicate that the SH group required for steroid binding is within or near the hormone-binding site itself, and that a second SH group (or groups) is involved in the binding of receptor to DNA. Three findings relate to the site of action of SH-blocking agents on hormone binding. First, glycerol decreased the rate of hormone dissociation and the rate of hormone displacement by mercurial reagents by 75 to 90%. Second, mercurial reagents displaced [3H]progesterone bound to the mero-receptor, a Mr 23,000 proteolytic fragment containing the hormone-binding site, but not the site of interaction with DNA. Third, hormone displacement was still present after a 10,000-fold purification of the progesterone receptor. Mercurial reagents also inhibited binding of progesterone receptor to DNA, whereas the SH-alkylating agents N-ethylmaleimide and iodoacetamide had no effect. It is likely that distinct sulfhydryl groups are required for steroid receptor interaction with hormone and with DNA, since brief treatment with mercurial reagents blocked DNA binding, but caused only a slight displacement of bound hormone. The SH group required for hormone binding probably lies within or near the hormone-binding site, is sensitive to mercurials, alkylating agents, and 5,5′-dithiobis(2-nitrobenzoate) (DTNB), and is protected by bound hormone. The SH group required for DNA binding, in contrast, is sensitive to mercurials but not to alkylating agents, is only partially sensitive to DTNB, and is not protected by bound hormone.
Keywords:To whom correspondence should be addressed.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号