首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of C4 photosynthesis: Physical and kinetic properties of active (dithiol) and inactive (disulfide) NADP-malate dehydrogenase from Zea mays
Authors:Anthony R Ashton  MD Hatch
Institution:Division of Plant Industry CSIRO, P.O. Box 1600, Canberra City, A.C.T. 2601, Australia
Abstract:NADP-malate dehydrogenase was purified from leaves of Zea mays in the absence of thiol-reducing agents by (NH4)2SO4, polyethylene glycol, and pH fractionation followed by dye-ligand affinity chromatography and gel filtration. The purified enzyme is completely inactive (no activity detected between pH 6 and 9) but can be reactivated by thiol-reducing agents including dithiothreitol and thioredoxin. The active enzyme shows distinctly alkaline pH optima when assayed in either direction; Km values at pH 8.5 are oxaloacetate, 18 μm; malate, 24 mm; NADPH, 50 μm; and NADP, 45 μm. The reduction of oxaloacetate is inhibited by NADP (competitive with respect to NADPH, Ki = 50 μm). The molecular weight of the native inactive or active enzyme is 150,000 with subunits of Mr 38,000. Active enzyme is much more sensitive (>50-fold) to heat denaturation than is the inactive enzyme and is irreversibly inactivated by N-ethylmaleimide whereas the inactive enzyme is insensitive to this reagent. The active and inactive forms of NADP-malate dehydrogenase are assumed to correspond to dithiol and disulfide forms of the enzyme, respectively. The relative coenzyme-binding affinities of inactive NADP-malate dehydrogenase differ by a factor of 102 from the binding affinities for active NADP-malate dehydrogenase and 104 for non-thiol-regulated NAD-specific malate dehydrogenase. It is proposed that the 100-fold change in differential binding of NADP and NADPH upon conversion of NADP-malate dehydrogenase to the disulfide form may sufficiently alter the equilibrium of the central enzyme-substrate complexes, and hence the catalytic efficiency of the enzyme, to explain the associated loss of activity.
Keywords:To whom correspondence should be addressed  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号