首页 | 本学科首页   官方微博 | 高级检索  
     


Formation, resealing and persistence of DNA breaks produced by 4-demethoxydaunorubicin in P388 leukemia cells
Authors:G Capranico  S Tinelli  F Zunino
Affiliation:Division of Experimental Oncology B, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy.
Abstract:The formation and disappearance of DNA single-strand breaks (SSB) produced by 4-demethoxydaunorubicin (4-dmDR) in P388 murine leukemia cells and in a resistant subline were examined by alkaline elution methods in relation to cellular pharmacokinetics. DNA strand breaks produced by this intercalating agent were essentially DNA lesions mediated by topoisomerase II, even at very high drug concentrations, since they were detected as protein-associated breaks by filter elution. Similarly, the appearance of delayed DNA breaks in cells exposed to high concentrations, following drug removal, showed predominance of protein-associated breaks, thus supporting a similar mechanism of breakage induction. This finding indirectly suggests that, in this experimental model, free radical production makes little (if any) contribution to DNA damage, and also that DNA effects are not the consequence of early cell death. In contrast to a rapid disappearance of protein-associated strand breaks produced by intercalating agents and topoisomerase II inhibitors of different classes, DNA breaks induced by low concentrations of the anthracycline derivative are only partially reversible following drug removal, but they persisted and even increased with high concentrations. Thus, not only the extent of DNA breaks but also their persistence may contribute to the cytotoxic potency of anthracyclines. The importance of DNA lesions to cytotoxic action of the anthracycline is also emphasized by drug effect on the resistant line. A negligible effect on DNA of resistant cells was detected at drug concentrations lethal to sensitive cells. However, exposure to equitoxic drug concentrations resulted in a comparable amount of DNA breaks in sensitive and resistant cells. Although faster DNA rejoining in resistant cells may be in part attributable to increased efflux of drug, no correlation exists between cell drug accumulation and extent of DNA lesions. With equitoxic drug concentrations cellular drug content was higher in resistant cells, suggesting an intrinsic insensitivity of this variant to DNA cleavage effects of the anthracycline.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号