首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The bacterial-like lactate shuttle components from heterotrophic Euglena gracilis
Authors:Ricardo Jasso-Chávez  Israel García-Cano  David Mendoza-Cózatl  Rafael Moreno-Sánchez
Institution:a Departamento de Bioquímica, Instituto Nacional de Cardiología, Juan Badiano #1, Col. Sección XVI, Tlalpan, México, D. F. 14080, México
b Departamento de Bioquímica, Facultad de Medicina, UNAM, México
Abstract:The structural and kinetic analyses of the components of the lactate shuttle from heterotrophic Euglena gracilis were carried out. Mitochondrial membrane-bound, NAD+-independent d-lactate dehydrogenase (d-iLDH) was purified by solubilization with CHAPS and heat treatment. The active enzyme was a 62-kDa monomer containing non-covalently bound FAD as cofactor. d-iLDH was specific for d-lactate and it was able to reduce quinones of different redox potential values. Oxalate and l-lactate were mixed-type inhibitors of d-iLDH. Mitochondrial l-iLDH also catalyzed the reduction of quinones, but it was inactivated during the extraction with detergents. Both l-iLDH and d-iLDH were inhibited by the specific flavoprotein-inhibitor diphenyleneiodonium, suggesting that l-iLDH was also a flavoprotein. Affinity chromatography revealed that the E. gracilis cytosolic fraction contained two types of NAD+-dependent LDH specific for the generation of d- and l-lactate (d-nLDH and l-nLDH, respectively). These two enzymes were tetramers of 126-132 kDa and showed an ordered bi-bi kinetic mechanism. Kinetic properties were different in both enzymes. Pyruvate reduction by d-nLDH was inhibited by its two products; the d-lactate oxidation was 40-fold lower than forward reaction. l-lactate oxidation by l-nLDH was not detected, whereas pyruvate reduction was activated by fructose-1, 6-bisphosphate, K+ or NH4+. Interestingly, membrane-bound l- and d-lactate dehydrogenases with quinone reductase activity have been only detected in bacteria, whereas the activity of soluble d-nLDH has been identified in bacteria and some yeast. Also, FBP-activated l-nLDH has been found solely in lactic bacteria. Based on their similar kinetic and structural characteristics, a possible common origin among bacterial and E. gracilis lactic dehydrogenase enzymes is discussed.
Keywords:Membrane-bound lactate dehydrogenase  NAD+-dependent lactate dehydrogenase  Mitochondrion  Energy metabolism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号