Submergence-induced leaf acclimation in terrestrial species varying in flooding tolerance |
| |
Authors: | Mommer Liesje Wolters-Arts Mieke Andersen Charlotte Visser Eric J W Pedersen Ole |
| |
Affiliation: | Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands. L.Mommer@science.ru.nl |
| |
Abstract: | Earlier work on the submergence-tolerant species Rumex palustris revealed that leaf anatomical and morphological changes induced by submergence enhance underwater gas exchange considerably. Here, the hypothesis is tested that these plastic responses are typical properties of submergence-tolerant species. Submergence-induced plasticity in leaf mass area (LMA) and leaf, cell wall and cuticle thickness was investigated in nine plant species differing considerably in tolerance to complete submergence. The functionality of the responses for underwater gas exchange was evaluated by recording oxygen partial pressures inside the petioles when plants were submerged. Acclimation to submergence resulted in a decrease in all leaf parameters, including cuticle thickness, in all species irrespective of flooding tolerance. Consequently, internal oxygen partial pressures (pO(2)) increased significantly in all species until values were close to air saturation. Only in nonacclimated leaves in darkness did intolerant species have a significantly lower pO(2) than tolerant species. These results suggest that submergence-induced leaf plasticity, albeit a prerequisite for underwater survival, does not discriminate tolerant from intolerant species. It is hypothesized that these plastic leaf responses may be induced in all species by several signals present during submergence; for example, low LMA may be a response to low photosynthate concentrations and a thin cuticle may be a response to high relative humidity. |
| |
Keywords: | aeration flooding tolerance leaf anatomy leaf traits multi species study oxygen microelectrodes submergence |
本文献已被 PubMed 等数据库收录! |
|