首页 | 本学科首页   官方微博 | 高级检索  
     


Calmodulin selectively modulates the guanylate cyclase activity by repressing the lipid phase separation temperature in the inner half of the bilayer of rat brain synaptosomal plasma membranes
Authors:Kopeikina-Tsiboukidou Lioudmila  George Deliconstantinos
Affiliation:(1) Department of Experimental Physiology, University of Athens Medical School, GR-115 27 Athens, Greece
Abstract:The association of [125I-]calmodulin with rat brain synaptosomal plasma membranes, when incubated for 1 h at 25° in the presence or in absence of 20 mgrM Ca2+, follows a sigmoid path with a Hill coefficient h=1.79±0.12 and h=1.72±0.11, respectively. The total association of calmodulin with the membrane increased approx. 60%–80% at all the range of calmodulin concentrations used in the presence of 20 mgrM Ca2+. A three fold increase of guanylate cyclase activity was shown in the presence of low concentrations of calmodulin (up to 10 mM); higher concentrations (up to 40 mM) however, led to a progressive inhibition of the enzyme activity with respect to maximal stimulation. Calmodulin increased the lipid fluidity of synaptosomal plasma membranes labeled with 1,6-diphenyl-1,3,5-hexatriene (DPH), as indicated by the steady-state fluorescence anisotropy [(ro/r)-1]–1. Arrhenius-type plots of [(ro/r)-1]–1 indicated that the lipid separation of the membrane at 22.7±1.2° was perturbed by calmodulin such that the temperature was reduced to 16.3±0.9° and 15.5±0.8° in the absence or in the presence of 20 mgrM Ca2+. Arrhenius plots of guanylate cyclase and acetylcholinesterase activities exhibited brak points at 25.7±1.4° and 22.3±1.0° in control synaptosomal plasma membranes, respectively. The break point for the guanylate cyclase was reduced to 16.3±0.9° in calmodulin treated synaptosomal plasma membranes whereas that of acetylcholinesterase remained unaffected (21.1±0.9°). The allosteric properties of guanylate cyclase by Mn-GTP (as reflected by changes in the Hill coefficient) were modulated by calmodulin while those of acetylcholinesterase by fluoride (F) were not altered. We propose that calmodulin achieves these effects through asymmetric perturbations of the membrane lipid structure and that increase in membrane fluidity of the inner leaflet of the membrane induced by calmodulin may be an early key event to the process of neurotransmitter release.
Keywords:Calmodulin  guanylate cyclase  membrane fluidity  membrane phase separation  fluorescence polarization  synaptosomal plasma membranes
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号