首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reduced bone turnover in mice lacking the P2Y(13) receptor of ADP
Authors:Wang Ning  Robaye Bernard  Agrawal Ankita  Skerry Timothy M  Boeynaems Jean-Marie  Gartland Alison
Institution:The Mellanby Centre for Bone Research, Department of Human Metabolism, The University of Sheffield, Sheffield S10 2RX, United Kingdom.
Abstract:Osteoporosis is a condition of excessive and uncoupled bone turnover, in which osteoclastic resorption exceeds osteoblastic bone formation, resulting in an overall net bone loss, bone fragility, and morbidity. Although numerous treatments have been developed to inhibit bone loss by blocking osteoclastic bone resorption, understanding of the mechanisms behind bone loss is incomplete. The purinergic signaling system is emerging to be a pivotal regulator of bone homeostasis, and extracellular ADP has previously been shown to be a powerful osteolytic agent in vitro. We report here that deletion of the P2Y(13) receptor, a G protein-coupled receptor for extracellular ADP, leads to a 40% reduction in trabecular bone mass, 50% reduction in osteoblast and osteoclast numbers in vivo, as well as activity in vitro, and an overall 50% reduction in the rate of bone remodeling in mice in vivo. Down-regulation of RhoA/ROCK I signaling and a reduced ratio of receptor activator of nuclear factor κB ligand/osteoprotegerin observed in osteoblasts from P2Y(13)R(-/-) mice might explain this bone phenotype. Furthermore, because one of the main causes of osteoporosis in older women is lack of estrogen, we examined the effect of ovariectomy of the P2Y(13)R(-/-) mice and found them to be protected from ovariectomy-induced bone loss by up to 65%. These data confirm a role of purinergic ADP signaling in the skeleton, whereby deletion of the P2Y(13) receptor leads to reduced bone turnover rates, which provide a protective advantage in conditions of accelerated bone turnover such as oestrogen deficiency-induced osteoporosis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号