首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biosynthetic pathways of the sex pheromone components and substrate selectivity of the oxidation enzymes working in pheromone glands of the fall webworm, Hyphantria cunea
Authors:Kiyota Ryutaro  Arakawa Maki  Yamakawa Rei  Yasmin Abeda  Ando Tetsu
Institution:a Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
Abstract:The fall webworm, Hyphantria cunea Drury (Lepidoptera: Arctiidae), is a harmful polyphagous defoliator. Female moths produce the following four pheromone components in a ratio of about 5:4:10:2; (9Z,12Z)-9,12-octadecadienal (I), (9Z,12Z,15Z)-9,12,15-octadecatrienal (II), cis-9,10-epoxy-(3Z,6Z)-3,6-henicosadiene (III), and cis-9,10-epoxy-(3Z,6Z)-1,3,6-henicosatriene (IV). Although 13C-labeled linolenic acid was not converted into trienal II at the pheromone glands of H. cunea females, GC-MS analysis of an extract of the pheromone gland treated topically with 13C-labeled linolenyl alcohol showed the aldehyde incorporating the isotope. Other C18 and C19 fatty alcohols were also oxidized to the corresponding aldehydes in the pheromone gland, indicating a biosynthetic pathway of IIvia linolenyl alcohol and low substrate selectivity of the alcohol oxidase in the pheromone gland. On the other hand, epoxydiene III was expected to be produced by specific 9,10-epoxidation of the corresponding C21 trienyl hydrocarbon, which might be biosynthesized from dietary linolenic acid in oenocytes and transported to the pheromone gland. The final biosynthetic step in the pheromone gland was confirmed by an experiment using deuterated C21 triene, which was synthesized by the chain elongation of linolenic acid and LiAlD4 reduction as key reactions. When the labeled triene was administered to the female by topical application at the pheromone gland or injection into the abdomen, deuterated III was detected in a pheromone extract by GC-MS analysis. Furthermore, the substrate selectivity of epoxidase and selective incorporation by the pheromone glands were examined by treatments with mixtures of the deuterated precursor and other hydrocarbons such as C19-C23 trienyl, C21 dienyl, and C21 monoenyl hydrocarbons. The 9,10-epoxy derivative of each alkene was produced, while the epoxidation of the C21 monoene was poorer than those of the trienes and diene. The low selectivity indicated that the species-specific pheromone of the H. cunea female was mainly due to the critical formation of the precursor of each component.
Keywords:Lepidoptera  Arctiid moth  Pheromone biosynthesis  Alcohol oxidase  13C18-Linolenyl alcohol  9  10-Epoxidase  D5-3  6  9-Henicosatriene
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号