首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microsomal activation of thioacetamide-S-oxide to a metabolite(s) that covalently binds to calf thymus DNA and other polynucleotides
Authors:HV Vadi  RA Neal
Institution:Center in Environmental Toxicology, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232 U.S.A.
Abstract:In the presence of NADPH liver microsomes isolated from phenobarbital-pretreated rats catalyze the conversion of 3H]thioacetamide-S-oxide to a reactive intermediate(s) which covalently binds to calf thymus DNA, calf liver RNA, polyguanylic acid (poly(G)) and polyadenylic acid (poly(A)). The highest level of binding of radioactivity was obtained with poly(G), followed by poly(A), RNA and DNA. The incorporation of radioactivity into DNA was linear for 30 min and there was a requirement for NADPH for time-dependent covalent binding to occur. Performing the microsomal incubations in an atmosphere of 80% CO/20% O2 or adding partially purified anti cytochrome P-450 immune serum to the microsomal incubations inhibited the total metabolism of thioacetamide-S-oxide and had a small, but insignificant, inhibitory effect on binding of radioactivity to calf thymus DNA. Using a reconstituted monooxygenase system containing cytochrome P-450 purified from phenobarbital-treated rats we were unable to detect any metabolism of thioacetamide-S-oxide. Only background levels of radioactivity were incorporated into calf thymus DNA when microsomes isolated from phenobarbital-treated rats were incubated with 3H]thioacetamide in the presence of NADPH. These results suggest that thioacetamide-S-oxide is an obligatory intermediate in the metabolic activation of thioacetamide to a reactive metabolite(s) which binds to calf thumus DNA.
Keywords:CTMA  cetyltrimethyl ammonium  TLC  thin-layer chromatography
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号