首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microsomal formation and chemical decomposition of pargyline N-oxide
Authors:G Hallström  B Lindeke  A-H Khuthier  MA Al-Iraqi
Institution:1. Department of Organic Pharmaceutical Chemistry, Biomedical Center, University of Uppsala, Box 574, S-751 23 Uppsala Sweden;2. Department of Chemistry, University of Mosul Iraq
Abstract:Pargyline undergoes metabolic N-oxidation in rat and rabbit liver microsomal preparations. The reaction requires oxygen and is NADPH dependent. N-oxidation and N-demethylation are equal in both control and induced rat liver microsomes, while N-oxidation is more dominant in rabbit tissue. Experiments investigating the CO-sensitivity and the effects of metyrapone suggest that cytochrome P-450 systems are involved in both reactions in the rat while an additional enzyme is responsible for the N-oxidation in the rabbit. Pargyline N-oxide is characterized by chemical instability and undergoes two consecutive rearrangements to yield propenal and Schiff bases, the latter undergoing hydrolysis to aldehydes and primary amines. Accordingly, due to the inherent instability of the N-oxide, metabolic N-oxidation of pargyline is, in addition to α-carbon oxidation, indicated as a metabolic route to benzaldehyde. Similarly the ease with which pargyline N-oxide generates propenal implicates N-oxidation as a metabolic route to be considered when evaluating the toxicity of pargyline.
Keywords:DI  direct probe technique  DNPH  2  4-dinitro-phenylhydrazine  FID  flame ionization detection  GLC  gas-liquid chromatography  IR  infrared  MS  mass spectrum  NMR  nuclear magnetic resonance  TLC  thin-layer chromatography
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号