Human cytotoxic T cells stimulated by antigen on dendritic cells recognize the N, SH, F, M, 22K, and 1b proteins of respiratory syncytial virus. |
| |
Authors: | A H Cherrie K Anderson G W Wertz P J Openshaw |
| |
Affiliation: | Department of Medicine, St. Mary's Hospital Medical School, London, United Kingdom. |
| |
Abstract: | We examined the human cytotoxic T-cell repertoire of nine adults to 9 of the 10 proteins of respiratory syncytial (RS) virus. Peripheral blood mononuclear cells from normal adults were stimulated with RS virus in vitro. The resulting polyclonal cultures were tested for lysis of B-lymphoblastoid cell lines infected with recombinant vaccinia viruses expressing each of nine individual RS virus proteins. The use of peripheral blood dendritic cells to present antigen gave more easily reproducible results over a shorter culture period than conventional methods. The six RS virus proteins most strongly recognized were the nucleoprotein N (nine of nine donors with greater than 10% above background lysis; P = 0.0004), the surface proteins SH (six of nine donors; P = 0.002) and F (five of nine donors; P = 0.008), the matrix proteins M (five of nine donors; P = 0.004) and 22K (three of nine donors; P = 0.01) and the nonstructural protein 1b (six of nine donors; P = 0.004). There was no significant recognition of the major surface glycoprotein G (two of nine donors), the internal phosphoprotein P (one of nine donors), or the nonstructural protein 1c (one of nine donors). Recognition was major histocompatibility complex class I restricted, but no association between major histocompatibility complex phenotype and protein specificity of T cells was seen. Recognition of F and 22K appeared to be associated with recent infection indicated by increased levels of anti-RS virus immunoglobulin G antibody in serum measured by enzyme-linked immunosorbent assay. Since cytotoxic T-cell recognition of RS virus proteins has been demonstrated to be important in the clearance of virus from infected hosts, the N, M, SH, 1b, F, and 22K proteins should be considered potential vaccine components. |
| |
Keywords: | |
|
|