首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide
Authors:Zhao Hongtao  Kalivendi Shasi  Zhang Hao  Joseph Joy  Nithipatikom Kasem  Vásquez-Vivar Jeannette  Kalyanaraman B
Institution:Biophysics Research Institute and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
Abstract:Hydroethidine (HE) or dihydroethidium (DHE), a redox-sensitive probe, has been widely used to detect intracellular superoxide anion. It is a common assumption that the reaction between superoxide and HE results in the formation of a two-electron oxidized product, ethidium (E+), which binds to DNA and leads to the enhancement of fluorescence (excitation, 500-530 nm; emission, 590-620 nm). However, the mechanism of oxidation of HE by the superoxide anion still remains unclear. In the present study, we show that superoxide generated in several enzymatic or chemical systems (e.g., xanthine/xanthine oxidase, endothelial nitric oxide synthase, or potassium superoxide) oxidizes HE to a fluorescent product (excitation, 480 nm; emission, 567 nm) that is totally different from E+. HPLC measurements revealed that the HE/superoxide reaction product elutes differently from E+. This new product exhibited an increase in fluorescence in the presence of DNA. Mass spectral data indicated that the molecular weight of the HE/superoxide reaction product is 330, while ethidium has a molecular weight of 314. We conclude that the reaction between superoxide and HE forms a fluorescent marker product that is different from ethidium. Potential implications of this finding in intracellular detection and imaging of superoxide are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号