首页 | 本学科首页   官方微博 | 高级检索  
     


Triton X-100 can alter the temporal sequence of the light-driven proton pump of archaerhodopsin 4
Authors:Ming Ming  Wang Yazhuo  Wu Jia  Ma Dewang  Li Qingguo  Ding Jiandong
Affiliation:Key Laboratory of Molecular Engineering of Polymers of the Chinese Ministry of Education, Department of Macromolecular Science, Lab of Advanced Materials, Fudan University, Shanghai 200433, China.
Abstract:We report that Triton X-100 can alter the temporal sequence of the light-induced proton uptake and release of archaerhodopsin 4 (AR4), a proton pumping protein in a species of Halobacteria from a Tibetan salt lake. Under physiological conditions, AR4 isolated from the bacterium exhibits a reversed temporal order of proton release and uptake compared to what is observed for bacteriorhodopsin (BR). However, in the presence of Triton X-100 early proton release was observed in AR4 at neutral pH by us. Further, this temporal order for light-driven proton release and uptake for AR4 was found to be recovered after the removal of Triton X-100 by Biobeads. This phenomenon of detergent-induced alteration of the order of proton release and uptake has not yet been reported in any other retinal-containing membrane protein such as BR. Our findings indicate that the function of AR4 is influenced by its self-assembled state, and meanwhile imply some subtle protein-lipid interactions or protein-protein interactions in adjusting the proton pumping behavior of AR4.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号