首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics
Authors:Ursino  Mauro; Lodi  Carlo Alberto
Abstract:Ursino, Mauro, and Carlo Alberto Lodi. A simplemathematical model of the interaction between intracranial pressure andcerebral hemodynamics. J. Appl.Physiol. 82(4): 1256-1269, 1997.---A simplemathematical model of intracranial pressure (ICP) dynamics oriented toclinical practice is presented. It includes the hemodynamics of thearterial-arteriolar cerebrovascular bed, cerebrospinal fluid (CSF)production and reabsorption processes, the nonlinear pressure-volumerelationship of the craniospinal compartment, and a Starling resistormechanism for the cerebral veins. Moreover, arterioles are controlledby cerebral autoregulation mechanisms, which are simulated by means ofa time constant and a sigmoidal static characteristic. The model isused to simulate interactions between ICP, cerebral blood volume, andautoregulation. Three different related phenomena are analyzed: thegeneration of plateau waves, the effect of acute arterial hypotensionon ICP, and the role of cerebral hemodynamics during pressure-volume index (PVI) tests. Simulation results suggest the following:1) ICP dynamics may become unstablein patients with elevated CSF outflow resistance and decreasedintracranial compliance, provided cerebral autoregulation is efficient.Instability manifests itself with the occurrence of self-sustainedplateau waves. 2) Moderate acutearterial hypotension may have completely different effects on ICP,depending on the value of model parameters. If physiological compensatory mechanisms (CSF circulation and intracranial storage capacity) are efficient, acute hypotension has only negligible effectson ICP and cerebral blood flow (CBF). If these compensatory mechanismsare poor, even modest hypotension may induce a large transient increasein ICP and a significant transient reduction in CBF, with risks ofsecondary brain damage. 3) The ICPresponse to a bolus injection (PVI test) is sharply affected, viacerebral blood volume changes, by cerebral hemodynamics andautoregulation. We suggest that PVI tests may be used to extractinformation not only on intracranial compliance and CSF circulation,but also on the status of mechanisms controlling CBF.

Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号