Abstract: | Interaction with excess unilamellar phosphatidylcholine (PC) vesicles resulted in depletion of as much as 90% of the cholesterol from the membrane of intact vesicular stomatitis (VS) virus. The cholesterol depletion was not significantly influenced by the proteolytic removal of virion glycoprotein spikes, but it was temperature dependent. Cholesterol depletion caused substantial reduction in anisotropy of the VS virion membrane as measured by fluorescence depolarization of the lipophilic probe 1,6-diphenyl-1,3,5-hexatriene; residual adsorbed vesicles represent a significant factor in this apparent increase in virion membrane fluidity. Interaction with PC vesicles resulted in a substantial loss of VS viral infectivity as measured by plating efficiency on L-cell monolayers. Reduction in infectivity appeared to be related to temperature-dependent depletion of virion cholesterol by PC vesicles. Interaction of VS virions with cholesterol-containing PC vesicles resulted in significantly less decline in infectivity, but attempts to restore cholesterol and infectivity to depleted VS virions were unsuccessful. Depletion of virion cholesterol apparently results through collision with PC vesicles rather than movement of cholesterol monomers or micelles through the aqueous phase, because PC vesicle-virion interaction in the presence of cholesterol oxidase did not result in substantial oxidation of translocated cholesterol. |