首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of salt stress on propagation,growth and nutrient uptake of typical aquatic plant species
Authors:Xin Chen  Xianwei Cheng  Hui Zhu  Gary Bauelos  Brian Shutes  Haitao Wu
Institution:Xin Chen,Xianwei Cheng,Hui Zhu,Gary Bañuelos,Brian Shutes,Haitao Wu
Abstract:Anthropogenic activities and natural causes contribute to an increase in the area and degree of degraded saline wetlands in arid/semi‐arid and coastal regions. The objective of this study was to determine the salt tolerance of the seven aquatic plant species Phragmites australis, Arundo donax, Canna indica, Scirpus validus, Alternanthera philoxeroides, Phyllostachys heteroclada and Potederia cordata during asexual reproduction and continuous growth. The species were exposed to five salinity treatments from 0.3 (control) to 20 dS m?1 during a 30 day experiment. Data were collected on asexual reproduction and growth, chlorophyll content in leaves, Na+ and K+ concentrations, total nitrogen (TN) and total phosphorus (TP) concentrations in above‐ground biomass (AGB) and below‐ground biomass (BGB). The results showed that: 1) increase in salinity (especially at a salinity level of EC ≥15 dS m?1) generally inhibited the capacity for asexual reproduction and reduced the chlorophyll content of leaves; 2) total dry biomass of plants was significantly negatively related to asexual reproduction; 3) species‐specific salt tolerance mechanisms were reflected by the Na+ and K+ concentrations and Na+/K+ ratios in different parts of the plants; and 4) the absorption of TN and TP were inhibited at high salinity (i.e. EC = 20 dS m?1) in AGB and BGB of most tested plant species. However, salinity may enhance plant uptake of TN and TP under certain conditions (e.g. EC at 5, 10 and 15 dS m?1). In general, as compared to the other species tested, giant reed A. donax and alligator weed A. philoxeroides showed relatively high asexual reproduction and growth capacity under high salt stress, and these species should thus be considered as candidates for restoration of degraded saline wetlands and/or for decontaminating saline wastewater.
Keywords:aquatic plants  asexual propagation  Na+/K+  nutrients uptake  salt stress
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号