首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of elevated CO2 on growth,calcification, and spectral dependence of photoinhibition in the coccolithophore Emiliania huxleyi (Prymnesiophyceae)1
Authors:M Rosario Lorenzo  Patrick J Neale  Cristina Sobrino  Pablo Len  Víctor Vzquez  Eileen Bresnan  María Segovia
Institution:M. Rosario Lorenzo,Patrick J. Neale,Cristina Sobrino,Pablo León,Víctor Vázquez,Eileen Bresnan,María Segovia
Abstract:We studied the effects of elevated CO2 concentrations on cell growth, calcification, and spectral variation in the sensitivity of photosynthesis to inhibition by solar radiation in the globally important coccolithophore Emiliania huxleyi. Growth rates and chlorophyll a content per cell showed no significant differences between elevated (800 ppmv) and ambient (400 ppmv) CO2 conditions. However, the production of organic carbon and the cell quotas for both carbon and nitrogen, increased under elevated CO2 conditions, whilst particulate inorganic carbon production rates decreased under the same conditions. Biometric analyses of cells showed that coccoliths only presented significant differences due to treatments in the central area width. Most importantly, the size of the coccosphere decreased under elevated CO2 conditions. The susceptibility of photosynthesis to inhibition by ultraviolet radiation (UVR) was estimated using biological weighting functions (BWFs) and a model that predicts photosynthesis under photosynthetically active radiation and UVR exposures. BWF results demonstrated that the sensitivity of photosynthesis to UVR was not significantly different between E. huxleyi cells grown under elevated and present CO2 concentrations. We propose that the acclimation to elevated CO2 conditions involves a physiological mechanism of regulation and allocation of energy and metabolites in the cell, which is also responsible for altering the sensitivity to UVR. In coccolithophores, this mechanism might be affected by the decrease in the calcification rates.
Keywords:calcification  Emiliania huxleyi  ocean acidification  photoinhibition  phytoplankton
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号