Abstract: | Understanding the processes that determine the architecture of interaction networks represents a major challenge in ecology and evolutionary biology. One of the most important interactions involving plants is the interaction between plants and mycorrhizal fungi. While there is a mounting body of research that has studied the architecture of plant–fungus interaction networks, less is known about the potential factors that drive network architecture. In this study, we described the architecture of the network of interactions between mycorrhizal fungi and 44 orchid species that represented different life forms and co‐occurred in tropical forest and assessed the relative importance of ecological, evolutionary and co‐evolutionary mechanisms determining network architecture. We found 87 different fungal operational taxonomic units (OTUs), most of which were members of the Tulasnellaceae. Most orchid species associated with multiple fungi simultaneously, indicating that extreme host selectivity was rare. However, an increasing specificity towards Tulasnellaceae fungal associates from terrestrial to epiphytic and lithophytic orchids was observed. The network of interactions showed an association pattern that was significantly modular (M = 0.7389, Mrandom = 0.6998) and nested (NODF = 5.53, p < 0.05). Terrestrial orchids had almost no links to modules containing epiphytic or lithophytic orchids, while modules containing epiphytic orchids also contained lithophytic orchids. Within each life form several modules were observed, suggesting that the processes that organize orchid–fungus interactions are independent of life form. The overall phylogenetic signal for both partners in the interaction network was very weak. Overall, these results indicate that tropical orchids associate with a wide number of mycorrhizal fungi and that ecological rather than phylogenetic constraints determine network architecture. |