首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Impairment in karrikin but not strigolactone sensing enhances root skewing in Arabidopsis thaliana
Authors:Stphanie M Swarbreck  Yannick Guerringue  Elsa Matthus  Fiona J C Jamieson  Julia M Davies
Institution:Stéphanie M. Swarbreck,Yannick Guerringue,Elsa Matthus,Fiona J. C. Jamieson,Julia M. Davies
Abstract:Roots form highly complex systems varying in growth direction and branching pattern to forage for nutrients efficiently. Here mutations in the KAI2 (KARRIKIN INSENSITIVE) α/β‐fold hydrolase and the MAX2 (MORE AXILLARY GROWTH 2) F‐box leucine‐rich protein, which together perceive karrikins (smoke‐derived butenolides), caused alteration in root skewing in Arabidopsis thaliana. This phenotype was independent of endogenous strigolactones perception by the D14 α/β‐fold hydrolase and MAX2. Thus, KAI2/MAX2 effect on root growth may be through the perception of endogenous KAI2‐ligands (KLs), which have yet to be identified. Upon perception of a ligand, a KAI2/MAX2 complex is formed together with additional target proteins before ubiquitination and degradation through the 26S proteasome. Using a genetic approach, we show that SMAX1 (SUPPRESSOR OF MAX2‐1)/SMXL2 and SMXL6,7,8 (SUPPRESSOR OF MAX2‐1‐LIKE) are also likely degradation targets for the KAI2/MAX2 complex in the context of root skewing. In A. thaliana therefore, KAI2 and MAX2 act to limit root skewing, while kai2's gravitropic and mechano‐sensing responses remained largely unaffected. Many proteins are involved in root skewing, and we investigated the link between MAX2 and two members of the SKS/SKU family. Though KLs are yet to be identified in plants, our data support the hypothesis that they are present and can affect root skewing.
Keywords:karrikin  strigolactone     Arabidopsis thaliana     waving  root  skewing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号