首页 | 本学科首页   官方微博 | 高级检索  
     


Structure of membrane tethers and their role in fusion
Authors:Christian Ungermann,Daniel Kü  mmel
Abstract:Vesicular transport between different membrane compartments is a key process in cell biology required for the exchange of material and information. The complex machinery that executes the formation and delivery of transport vesicles has been intensively studied and yielded a comprehensive view of the molecular principles that underlie the budding and fusion process. Tethering also represents an essential step in each trafficking pathway. It is mediated by Rab GTPases in concert with so‐called tethering factors, which constitute a structurally diverse family of proteins that share a similar role in promoting vesicular transport. By simultaneously binding to proteins and/or lipids on incoming vesicles and the target compartment, tethers are thought to bridge donor and acceptor membrane. They thus provide specificity while also promoting fusion. However, how tethering works at a mechanistic level is still elusive. We here discuss the recent advances in the structural and biochemical characterization of tethering complexes that provide novel insight on how these factors might contribute the efficiency of fusion.
Keywords:CATCHR  golgin  membrane fusion  Rab GTPases  Sec1/Munc18  SNARE  tethering  vesicular transport
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号