首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biogenesis of lysosome‐related organelles complex‐1 (BORC) regulates late endosomal/lysosomal size through PIKfyve‐dependent phosphatidylinositol‐3,5‐bisphosphate
Authors:Teodor E Yordanov  Victoria E B Hipolito  Gudrun Liebscher  Georg F Vogel  Taras Stasyk  Caroline Herrmann  Stephan Geley  David Teis  Roberto J Botelho  Michael W Hess  Lukas A Huber
Abstract:Mechanisms that control lysosomal function are essential for cellular homeostasis. Lysosomes adapt in size and number to cellular needs but little is known about the underlying molecular mechanism. We demonstrate that the late endosomal/lysosomal multimeric BLOC‐1‐related complex (BORC) regulates the size of these organelles via PIKfyve‐dependent phosphatidylinositol‐3,5‐bisphosphate PI(3,5)P2] production. Deletion of the core BORC component Diaskedin led to increased levels of PI(3,5)P2, suggesting activation of PIKfyve, and resulted in enhanced lysosomal reformation and subsequent reduction in lysosomal size. This process required AMP‐activated protein kinase (AMPK), a known PIKfyve activator, and was additionally dependent on the late endosomal/lysosomal adaptor, mitogen‐activated protein kinases and mechanistic target of rapamycin activator (LAMTOR/Ragulator) complex. Consistently, in response to glucose limitation, AMPK activated PIKfyve, which induced lysosomal reformation with increased baseline autophagy and was coupled to a decrease in lysosomal size. These adaptations of the late endosomal/lysosomal system reversed under glucose replete growth conditions. In summary, our results demonstrate that BORC regulates lysosomal reformation and size in response to glucose availability.
Keywords:AMP‐activated protein kinase (AMPK)  BORC  LAMTOR  late endosome  lysosomal reformation  organelle size  phosphatidylinositol‐3  5‐bisphosphate [PI(3  5)P2]  PIKfyve
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号