首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effect of two episodes of denervation and reinnervation on skeletal muscle contractile function.
Authors:Kotaro Yoshimura  Hirotaka Asato  Sameer S Jejurikar  Paul S Cederna  Melanie G Urbanchek  William M Kuzon
Institution:Department of Plastic and Reconstructive Surgery, University of Tokyo, Japan.
Abstract:Sensory or motor "baby-sitting" has been proposed as a clinical strategy to preserve muscle integrity if motion-specific axons must regenerate over a long distance to reach denervated target muscles. Denervated muscles are innervated temporarily by using axons from nearby sensory or motor nerves. After motion specific motor axons have reached the target, the baby-sitter nerve is severed and motion-specific axons are directed to the target. Although this strategy minimizes denervation time, the requisite second episode of denervation and reinnervation might be deleterious to muscle contractile function. This study was designed to test the hypothesis that two sequential episodes of skeletal muscle denervation and reinnervation result in greater force and power deficits than a single peripheral nerve injury and repair. Adult Lewis rats underwent either transection and epineurial repair or sham exposure of the left peroneal nerve. After a 4-month recovery period, the contractile properties of the extensor digitorum longus muscle of the sham exposure group (control, n = 9) and one of the nerve division and repair groups (repair group 1, n = 9) were evaluated with measurements of the maximum tetanic isometric force, peak power, and maximal sustained power. A third group of rats underwent a second cycle of nerve division and repair (repair group 2, n = 9) at this same time point. Four months postoperatively, contractile properties of the extensor digitorum longus muscles were evaluated. Maximum tetanic isometric force and peak power were significantly reduced in repair group 2 rats as compared with repair group 1 and control rats. Maximal sustained power was not significantly different between the groups. These data support our working hypothesis that skeletal muscle contractile function is adversely affected by two cycles of denervation and reinnervation as compared with a single episode of nerve division and repair.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号