首页 | 本学科首页   官方微博 | 高级检索  
     


Aberrant IgM signaling promotes survival of transitional T1 B cells and prevents tolerance induction in lupus-prone New Zealand black mice
Authors:Roy Valerie  Chang Nan-Hua  Cai Yongchun  Bonventi Gabriel  Wither Joan
Affiliation:Arthritis Center of Excellence, Toronto Western Research Institute, Toronto, Ontario, Canada.
Abstract:New Zealand Black (NZB) mice develop a lupus-like syndrome. Although the precise immune defects leading to autoantibody production in these mice have not been characterized, they possess a number of immunologic abnormalities suggesting that B cell tolerance may be defective. In the bone marrow, immature self-reactive B cells that have failed to edit their receptors undergo apoptosis as a consequence of Ig receptor engagement. Splenic transitional T1 B cells are recent bone marrow emigrants that retain these signaling properties, ensuring that B cells recognizing self-Ags expressed only in the periphery are deleted from the naive B cell repertoire. In this study we report that this mechanism of tolerance is defective in NZB mice. We show that NZB T1 B cells are resistant to apoptosis after IgM cross-linking in vitro. Although extensive IgM cross-linking usually leads to deletion of T1 B cells, in NZB T1 B cells we found that it prevents mitochondrial membrane damage, inhibits activation of caspase-3, and promotes cell survival. Increased survival of NZB T1 B cells was associated with aberrant up-regulation of Bcl-2 after Ig receptor engagement. We also show that there is a markedly increased proportion of NZB T1 B cells that express elevated levels of Bcl-2 in vivo and provide evidence that up-regulation of Bcl-2 follows encounter with self-Ag in vivo. Thus, we propose that aberrant cell signaling in NZB T1 B cells leads to the survival of autoreactive B cells, which predisposes NZB mice to the development of autoimmunity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号