首页 | 本学科首页   官方微博 | 高级检索  
     


Next-generation sequencing for diagnosis of rare diseases in the neonatal intensive care unit
Authors:Hussein Daoud  Stephanie M. Luco  Rui Li  Eric Bareke  Chandree Beaulieu  Olga Jarinova  Nancy Carson  Sarah M. Nikkel  Gail E. Graham  Julie Richer  Christine Armour  Dennis E. Bulman  Pranesh Chakraborty  Michael Geraghty  Matthew A. Lines  Thierry Lacaze-Masmonteil  Jacek Majewski  Kym M. Boycott  David A. Dyment
Affiliation:Department of Genetics (Daoud, Luco, Beaulieu, Jarinova, Carson, Nikkel, Graham, Richer, Armour, Boycott, Dyment) and Department of Pediatrics (Bulman, Chakraborty, Geraghty, Lines, Lacaze-Masmonteil), Children’s Hospital of Eastern Ontario, Ottawa, Ont.; McGill University (Li, Bareke, Majewski) and Genome Quebec Innovation Centre (Li, Bareke, Majewski), Montréal, Que.
Abstract:Background:Rare diseases often present in the first days and weeks of life and may require complex management in the setting of a neonatal intensive care unit (NICU). Exhaustive consultations and traditional genetic or metabolic investigations are costly and often fail to arrive at a final diagnosis when no recognizable syndrome is suspected. For this pilot project, we assessed the feasibility of next-generation sequencing as a tool to improve the diagnosis of rare diseases in newborns in the NICU.Methods:We retrospectively identified and prospectively recruited newborns and infants admitted to the NICU of the Children’s Hospital of Eastern Ontario and the Ottawa Hospital, General Campus, who had been referred to the medical genetics or metabolics inpatient consult service and had features suggesting an underlying genetic or metabolic condition. DNA from the newborns and parents was enriched for a panel of clinically relevant genes and sequenced on a MiSeq sequencing platform (Illumina Inc.). The data were interpreted with a standard informatics pipeline and reported to care providers, who assessed the importance of genotype–phenotype correlations.Results:Of 20 newborns studied, 8 received a diagnosis on the basis of next-generation sequencing (diagnostic rate 40%). The diagnoses were renal tubular dysgenesis, SCN1A-related encephalopathy syndrome, myotubular myopathy, FTO deficiency syndrome, cranioectodermal dysplasia, congenital myasthenic syndrome, autosomal dominant intellectual disability syndrome type 7 and Denys–Drash syndrome.Interpretation:This pilot study highlighted the potential of next-generation sequencing to deliver molecular diagnoses rapidly with a high success rate. With broader use, this approach has the potential to alter health care delivery in the NICU.A rare disease is defined by a prevalence of less than 1 in 2000 individuals.1 However, when considered in aggregate, 1%–2% of Canadians will manifest a rare disease in their lifetime.2,3 These disorders can present in the newborn period, and a third of these young children will succumb to the disease in their first year of life.35 Newborns who present with rare diseases typically require admission to a neonatal intensive care unit (NICU), where the standard of care includes exhaustive consultations and investigations to determine a molecular diagnosis. Reaching such a diagnosis is a challenge, given the considerable clinical and genetic heterogeneity associated with rare diseases; diagnosis is also confounded by the early stage of presentation, which is further accentuated in premature newborns. As a result, traditional genetic or metabolic investigations can be lengthy and expensive, and they often fail to arrive at a diagnosis in a timely manner.6The current approach during a medical genetics consultation begins with a clinical assessment, followed by diagnostic testing that usually includes sequential testing of one or more candidate genes or panels of candidate genes. This step often requires approval for out-of-country testing, as only a limited number of gene tests are available for clinical testing in Canada. If the result of the first test is negative, the clinician may consider testing the next most likely candidate gene, frequently with diminishing returns. This approach can take months or years and can be a frustrating process for the patient, family and clinicians providing care.7 The inability to arrive at a timely and efficient diagnosis represents a substantial lost opportunity, as a diagnosis can limit or even halt further invasive, and at times futile, investigations for the neonate. Importantly, an accurate diagnosis informs prognosis and may guide management decisions.The advent of next-generation sequencing has greatly advanced the ability to rapidly identify the novel genes responsible for disease.8 Whole-exome sequencing (sequencing of the coding portion of the genome) is beginning to be used on a clinical basis in tertiary care centres.9,10 In these initial clinical cohort studies, a molecular diagnosis was provided by whole-exome sequencing for about 25% of families. The proportion increased to 31% when the patient’s parents were also analyzed.9 Another study used retrospective whole-genome sequencing to make a diagnosis in 57% of 35 children from the intensive care setting.11Although whole-exome and whole-genome sequencing are powerful tools, important conditions are required for translation of these methods to the clinic or hospital setting. The availability of high-throughput sequencers, complex and costly infrastructure, and personnel with bioinformatics expertise are prerequisites. These resources may not be broadly available within some health care systems, and other strategies may be more relevant and effective.Another attractive alternative is analysis based on next-generation sequencing that focuses only on the clinically relevant genes with known associated clinical phenotypes.12 This strategy offers several advantages over whole-exome or whole-genome sequencing — interpretation of variants may be more straight-forward, a higher depth of coverage can be readily achieved, and less infrastructure and fewer personnel are required — all of which contribute to a more rapid return of results.For this pilot study, we evaluated the performance of a targeted next-generation sequencing panel that included 4813 “disease-relevant” genes in a cohort of newborns with rare disease in the NICU and assessed the effectiveness of this method to accurately diagnose these critically ill babies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号