首页 | 本学科首页   官方微博 | 高级检索  
     


The reductive half-reaction of two bifurcating electron-transferring flavoproteins: Evidence for changes in flavin reduction potentials mediated by specific conformational changes
Authors:Wayne Vigil  Jr.  Jessica Tran  Dimitri Niks  Gerrit J. Schut  Xiaoxuan Ge  Michael W.W. Adams  Russ Hille
Affiliation:1.Department of Biochemistry, University of California, Riverside, California, USA;2.Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
Abstract:The EtfAB components of two bifurcating flavoprotein systems, the crotonyl-CoA-dependent NADH:ferredoxin oxidoreductase from the bacterium Megasphaera elsdenii and the menaquinone-dependent NADH:ferredoxin oxidoreductase from the archaeon Pyrobaculum aerophilum, have been investigated. With both proteins, we find that removal of the electron-transferring flavin adenine dinucleotide (FAD) moiety from both proteins results in an uncrossing of the reduction potentials of the remaining bifurcating FAD; this significantly stabilizes the otherwise very unstable semiquinone state, which accumulates over the course of reductive titrations with sodium dithionite. Furthermore, reduction of both EtfABs depleted of their electron-transferring FAD by NADH was monophasic with a hyperbolic dependence of reaction rate on the concentration of NADH. On the other hand, NADH reduction of the replete proteins containing the electron-transferring FAD was multiphasic, consisting of a fast phase comparable to that seen with the depleted proteins followed by an intermediate phase that involves significant accumulation of FAD⋅, again reflecting uncrossing of the half-potentials of the bifurcating FAD. This is then followed by a slow phase that represents the slow reduction of the electron-transferring FAD to FADH, with reduction of the now fully reoxidized bifurcating FAD by a second equivalent of NADH. We suggest that the crossing and uncrossing of the reduction half-potentials of the bifurcating FAD is due to specific conformational changes that have been structurally characterized.
Keywords:electron bifurcation   electron-transferring flavoprotein   rapid-reaction kinetics   electron paramagnetic resonance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号