首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biochemical processing of plant acquired pyrrolizidine alkaloids by the neotropical leaf-beetle Platyphora boucardi
Authors:Hartmann T  Theuring C  Witte L  Schulz S  Pasteels J M
Institution:Institut für Pharmazeutische Biologie der Technischen Universit?t Braunschweig, Mendelssohnstrasse 1, D-38106 Braunschweig, Germany. t.hartmann@tu-bs.de
Abstract:Leaf beetles of the genus Platyphora, feeding on plant species containing pyrrolizidine alkaloids of the lycopsamine type, not only sequester these alkaloids and concentrate them in their exocrine defensive secretions, but also specifically process the plant acquired alkaloids. Using P. boucardi as subject, three mechanisms were studied: (i). utilization of host plant alkaloids that are not sequestered per se; (ii). elucidation of the mechanism of the already documented C-7 epimerization of heliotridine O(9)-monoesters; (iii). the specificity of insect catalyzed necine base esterification. P. boucardi does not sequester the triester parsonsine, the principal alkaloid of its host plant Prestonia portobellensis (Apocynaceae). Beetles fed with a purified mixture of nor-derivatives of parsonsine, obtained from Parsonsia laevigata, did not sequester the triesters but transformed them by partial degradation into monoesters that are accumulated in the defensive secretions. The mechanism of the previously described transformation of rinderine into intermedine by C-7 epimerization was elucidated by feeding C-7 deuterated heliotrine (3'-methylrinderine). The transformation of heliotrine into epiheliotrine (3'-methylintermedine) catalyzed by P. boucardi is accompanied by complete loss of deuterium, indicating the same mechanism of an oxidation-reduction process via a ketone intermediate as recently demonstrated in a pyrrolizidine alkaloid sequestering lepidopteran. P. boucardi is able to form ester alkaloids from five different necine bases fed as radioactively labeled substrates. However, besides C-7 epimerization the beetles are not able to convert simple necine bases into retronecine. The functional importance of the various alkaloid transformations is discussed in comparison to striking parallels of analogous reactions known from pyrrolizidine alkaloid sequestering Lepidoptera.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号