首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Concurrent reductions in blood pressure and metabolic rate during fasting in the unrestrained SHR
Authors:Williams T D  Chambers J B  May O L  Henderson R P  Rashotte M E  Overton J M
Institution:Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA.
Abstract:Arctic ground squirrels (Spermophilus parryii) overwinter in hibernaculum conditions that are substantially below freezing. During torpor, captive arctic ground squirrels displayed ambient temperature (T(a))-dependent patterns of core body temperature (T(b)), metabolic rate (TMR), and metabolic fuel use, as determined by respiratory quotient (RQ). At T(a) 0 to -16 degrees C, T(b) remained relatively constant, and TMR rose proportionally with the expanding gradient between T(b) and T(a), increasing >15-fold from a minimum of 0.0115 +/- 0.0012 ml O(2). g(-1). h(-1). At T(a) 0-20 degrees C, T(b) increased with T(a); however, TMR did not change significantly from T(b) 0 to 12 degrees C, indicating temperature-independent inhibition of metabolic rate. The overall change in TMR from T(b) 4 to 20 degrees equates to a Q(10) of 2.4, but within this range of T(b), Q(10) changed from 1.0 to 14.1. During steady-state torpor at T(a) 4 and 8 degrees C, RQ averaged 0.70 +/- 0.013, indicating exclusive lipid catabolism. At T(a) -16 and 20 degrees C, RQ increased significantly to >0.85, consistent with recruitment of nonlipid fuels. RQ was negatively correlated with maximum torpor bout length. For T(a) values <0 degrees C, this relationship supports the hypothesis that availability of nonlipid metabolic fuels limits torpor duration in hibernating mammals; for T(a) values >0 degrees C, hypotheses linked to body temperature are supported. Because anterior body temperatures differ from core, overall, the duration torpor can be extended in hibernating mammals may be dependent on brain temperature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号