首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sequence mutations in teleost cardiac troponin C that are permissive of high Ca2+ affinity of site II
Authors:Gillis Todd E  Moyes Chris D  Tibbits Glen F
Institution:Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
Abstract:Cardiac myofibrilsisolated from trout heart have been demonstrated to have a highersensitivity for Ca2+ than mammalian cardiac myofibrils.Using cardiac troponin C (cTnC) cloned from trout and mammalian hearts,we have previously demonstrated that this comparatively highCa2+ sensitivity is due, in part, to trout cTnC (ScTnC)having twice the Ca2+ affinity of mammalian cTnC (McTnC)over a broad range of temperatures. The amino acid sequence of ScTnC is92% identical to McTnC. To determine the residues responsible for thehigh Ca2+ affinity, the function of a number of ScTnC andMcTnC mutants was characterized by monitoring an intrinsic fluorescentreporter that monitors Ca2+ binding to site II (F27W). Theremoval of the COOH terminus (amino acids 90-161) from ScTnC andMcTnC maintained the difference in Ca2+ affinity betweenthe truncated cTnC isoforms (ScNTnC and McNTnC). The replacement ofGln29 and Asp30 in ScNTnC with thecorresponding residues from McNTnC, Leu and Gly, respectively, reducedCa2+ affinity to that of McNTnC. These results demonstratethat Gln29 and Asp30 in ScTnC are required forthe high Ca2+ affinity of site II.

Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号