首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Temperature alters reproductive life history patterns in Batrachochytrium dendrobatidis,a lethal pathogen associated with the global loss of amphibians
Authors:Jamie Voyles  Leah R Johnson  Cheryl J Briggs  Scott D Cashins  Ross A Alford  Lee Berger  Lee F Skerratt  Rick Speare  Erica Bree Rosenblum
Institution:1. Department of Environmental Science, Policy and Management, University of California‐ Berkeley, , Berkeley, California, 94720‐3144 USA;2. School of Public Health, Tropical Medicine and Rehabilitation Sciences, Amphibian Disease Ecology Group, James Cook University, , Townsville, Queensland, 4811 Australia;3. Department of Ecology and Evolution, University of Chicago, , Chicago, IL, 60637 USA;4. Department of Ecology, Evolution and Marine Biology, University of California, , Santa Barbara, CA, 93106 USA;5. School of Marine and Tropical Biology, Amphibian Disease Ecology Group, James Cook University, , Townsville, Queensland, 4811 Australia
Abstract:Understanding how pathogens respond to changing environmental conditions is a central challenge in disease ecology. The environmentally sensitive fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes the amphibian disease chytridiomycosis, has spread globally causing amphibian extirpations in a wide variety of climatic regions. To gain an in‐depth understanding of Bd's responses to temperature, we used an integrative approach, combining empirical laboratory experiments with mathematical modeling. First, we selected a single Bd isolate and serially propagated two lineages of the isolate for multiple generations in two stable thermal conditions: 4°C (cold‐adapted lineage) and 23°C (warm‐adapted lineage). We quantified the production of infectious zoospores (fecundity), the timing of zoospore release, and zoospore activity in reciprocal temperature transplant experiments in which both Bd lineages were grown in either high or low temperature conditions. We then developed population growth models for the Bd lineages under each set of temperature conditions. We found that Bd had lower population growth rates, but longer periods of zoospore activity in the low temperature treatment (4°C) compared to the high temperature treatment (23°C). This effect was more pronounced in Bd lineages that were propagated in the low temperature treatment (4°C), suggesting a shift in Bd's response to low temperature conditions. Our results provide novel insights into the mechanisms by which Bd can thrive in a wide variety of temperature conditions, potentially altering the dynamics of chytridiomycosis and thus, the propensity for Bd to cause amphibian population collapse. We also suggest that the adaptive responses of Bd to thermal conditions warrant further investigation, especially in the face of global climate change.
Keywords:Amphibian declines  Batrachochytrium dendrobatidis  chytridiomycosis  climate change  emerging infectious disease  temperature
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号