首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spectroscopic studies of the interactions of coenzymes and coenzyme fragments with pig heart, oxidized triphosphopyridine nucleotide specific isocitrate dehydrogenase
Authors:M T Mas  R F Colman
Abstract:Spectroscopic, ultrafiltration, and kinetic studies have been used to characterize interactions of reduced and oxidized triphosphopyridine nucleotides (TPNH and TPN), 2'-phosphoadenosine 5'-diphosphoribose (Rib-P2-Ado-P), and adenosine 2',5'-bisphosphate Ado(2',5')P2] with with TPN-specific isocitrate dehydrogenase. Close similarity of the UV difference spectra and of the protein fluorescence changes accompanying the formation of the binary complexes provides evidence for the binding of these nucleotides to the same site on the enzyme. From the pH dependence of the dissociation constants for TPNH binding to TPN-specific isocitrate dehydrogenase in the absence and in the presence of Mn2+, over the pH range 5.8-7.6, it has been demonstrated that the nucleotide binds to the enzyme in its unprotonated, metal-free form. The involvement of positively charged residues, protonated over the pH range studied, has been postulated. One TPNH binding site per enzyme subunit has been measured by fluorescence and difference absorption titrations. A dramatic effect of ionic strength on binding has been demonstrated: about a 1000-fold decrease in the dissociation constant for TPNH has been observed at pH 7.6 upon decreasing ionic strength from 0.336 (Kd = 1.2 +/- 0.2 microM) to 0.036 M (Kd = 0.4 +/- 0.1 nM) in the presence and in the absence of 100 mM Na2SO4, respectively. Weak competition of sulfate ions for the nucleotide binding site has been observed (KI = 57 +/- 3 mM). The binding of TPN in the presence of 100 mM Na2SO4 at pH 7.6 is about 100-fold weaker (Kd = 110 +/- 22 microM) than the binding of the reduced coenzyme and is similarly affected by ionic strength. These results demonstrate the importance of electrostatic interactions in the binding of the coenzyme to TPN-specific isocitrate dehydrogenase. The large enhancement of protein fluorescence caused by binding of TPN and Rib-P2-Ado-P (delta Fmax = 50%) and of Ado(2',5')P2 (delta Fmax = 41%) has been ascribed to a local conformational change of the enzyme. An apparent stoichiometry of 0.5 nucleotide binding site per peptide chain was determined for TPN, Rib-P2-Ado-P, and Ado(2',5')P2 from fluorescence titrations, in contrast to one binding site per enzyme subunit determined from UV difference spectral titration and ultrafiltration experiments. Thus, the binding of one molecule of the nucleotide per dimeric enzyme molecule is responsible for the total increase in protein fluorescence, while binding to the second subunit does not cause further change.(ABSTRACT TRUNCATED AT 400 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号