首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A novel gene,CBP1, encoding a putative extracellular chitin-binding protein,may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium differentiation
Authors:Kamakura Takashi  Yamaguchi Syuichi  Saitoh Ken-ichiro  Teraoka Tohru  Yamaguchi Isamu
Institution:Microbial Toxicology Laboratory, RIKEN Institute, Wako, Saitama, Japan. kamakura@postman.riken.go.jp
Abstract:The conidial germ tube of the rice blast fungus, Magnaporthe grisea, differentiates a specialized cell, an appressorium, required for penetration into the host plant. Formation of the appressorium is also observed on artificial solid substrata such as polycarbonate. A novel emerging germ tube-specific gene, CBP1 (chitin-binding protein), was found in a cDNA subtractive differential library. CBP1 coded for a putative extracellular protein (signal peptide) with two similar chitin-binding domains at both ends of a central domain with homology to fungal chitin deacetylases and with a C-terminus domain rich in Ser/Thr related extracellular matrix protein such as agglutinin. The consensus sequence of the chitin-binding domain found in CBP1 has never been reported in fungi and is similar to the chitin-binding motif in plant lectins and plant chitinases classes I and IV. CBPI was disrupted in order to identify its function. Null mutants of CBP1 failed to differentiate appressoria normally on artificial surface but succeeded in normally differentiating appressoria on the plant leaf surface. Since the null mutant Cbp1- showed abnormal appressorium differentiation only on artificial surfaces and was sensitive to the chemical inducers, CBP1 seemed to play an important role in the recognition of physical factors on solid surfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号