首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Optimization of receptor-G protein coupling by bilayer lipid composition I: kinetics of rhodopsin-transducin binding.
Authors:D C Mitchell  S L Niu  B J Litman
Institution:Section of Fluorescence Studies, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland 20852, USA.
Abstract:The role of membrane composition in modulating the rate of G protein-receptor complex formation was examined using rhodopsin and transducin (G(t)) as a model system. Metarhodopsin II (MII) and MII-G(t) complex formation rates were measured, in the absence of GTP, via flash photolysis for rhodopsin reconstituted in 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (18:0,18:1PC) and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0,22:6PC) bilayers, with and without 30 mol% cholesterol. Variation in bilayer lipid composition altered the lifetime of MII-G(t) formation to a greater extent than the lifetime of MII. MII-G(t) formation was fastest in 18:0,22:6PC and slowest in 18:0,18:1PC/30 mol% cholesterol. At 37 degrees C and a G(t) to photolyzed rhodopsin ratio of 1:1 in 18:0,22:6PC bilayers, MII-G(t) formed with a lifetime of 0.6 +/- 0.06 ms, which was not significantly different from the lifetime for MII formation. Incorporation of 30 mol% cholesterol slowed the rate of MII-G(t) complex formation by about 400% in 18:0,18:1PC, but by less than 25% in 18:0,22:6PC bilayers. In 18:0,22:6PC, with or without cholesterol, MII-G(t) formed rapidly after MII formed. In contrast, cholesterol in 18:0,18:1PC induced a considerable lag time in MII-G(t) formation after MII formed. These results demonstrate that membrane composition is a critical factor in determining the temporal response of a G protein-coupled signaling system.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号