首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rational design of genetically encoded fluorescence resonance energy transfer-based sensors of cellular Cdc42 signaling
Authors:Seth Abhinav  Otomo Takanori  Yin Helen L  Rosen Michael K
Institution:Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.
Abstract:The temporal and spatial control of Rho GTPase signaling pathways is a central issue in understanding the molecular mechanisms that generate complex cellular movements. The Rho protein Cdc42 induces a significant conformational change in its downstream effector, the Wiskott-Aldrich syndrome protein (WASP). On the basis of this conformational change, we have created a series of single-molecule sensors for both active Cdc42 and Cdc42 guanine nucleotide exchange factors (GEFs) that utilize fluorescence resonance energy transfer (FRET) between cyan and yellow fluorescent proteins. In vitro, the Cdc42 sensors produce up to 3.2-fold FRET emission ratio changes upon binding active Cdc42. The GEF sensors yield up to 1.7-fold changes in FRET upon exchange of GDP for GTP. The GEF-catalyzed rate of nucleotide exchange for the GEF sensor is indistinguishable from that of wild-type Cdc42, but GAP-catalyzed nucleotide hydrolysis is slowed approximately 16-fold. In vivo, both sensors faithfully report on Cdc42 and/or Cdc42-GEF activity. These results establish the successful creation of rationally designed and genetically encoded tools that can be used to image the activity of biologically and medically important molecules in living systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号